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Abstract

Significant research effort has been directed towards the design and performance analysis of imperfect scheduling policies
for wireless networks. These imperfect schedulers are of interest despite being sub-optimal, as they allow for more tractable
implementation at the expense of some loss in performance. However much of this prior work takes a uniform scaling approach
to analyzing scheduling performance, whereby the performance of a scheduling policy is characterized in terms of a single
scalar quantity, the efficiency-ratio. While suitable for characterizing worst-case performance, this approach limits one’s ability
to understand the different extents of performance degradation that may be experienced by different links in a network. Such
an understanding is very valuable when average performance is of greater interest than the worst-case, or when certain links
are more important than others. Furthermore, once one approaches scheduler design with non-uniform performance guarantees
in mind, one finds that simple modifications to well-known scheduling algorithms can yield substantially improved non-uniform
scaling results compared to the original algorithms. In this paper, we make a comprehensive case for adopting such an approach
by presenting non-uniform scaling results for a set of algorithms that are variants of well-known algorithms from the class of
maximal schedulers.

I. I NTRODUCTION

Substantial recent research effort has been directed towards the design ofimperfectscheduling policies [1], [2], [3], [4]
for wireless networks, and analyzing their performance. These imperfect schedulers are of interest despite being sub-optimal,
as they allow for more tractable implementation at the expense of some loss in performance. However, much of this prior
work takes a uniform scaling approach to analyzing scheduling performance whereby the performance of a scheduling policy is
characterized in terms of a single scalar quantity–theefficiency-ratio.1 While this leads to a compact and simple characterization,
it ties down the performance criterion to the worst-case degradation experienced by any link in the network. In a large range of
scenarios, it is likely that many or most links in the network may be able to achieve much better throughput. When the average
experience of most links is more important than the worst-case, it is more relevant to consider the performance achieved by
each link, rather than use the performance of the worst-case link as a metric. Similarly, when all links are not equally important,
one may care about trying to provide performance guarantees proportional to each link’s importance. In such scenarios, it is
important to be able to understand what kind of differentiated guarantees a scheduling algorithm can provide to different links.
Thus, it is very relevant to attempt performance analysis based on anefficiency-vector2 rather than a scalarefficiency-ratio.

While most of the relevant prior work takes a uniform scaling approach, it must be noted that some non-uniform scaling
bounds were indeed proved in [5] for a maximal scheduling algorithm. More recently, non-uniform scaling bounds for the
Longest Queue First scheduling algorithm were proved in [6].

In this paper, we make a much more comprehensive attempt to make a case for efficiency-vector based performance analysis.
In particular, we show that simple modifications involving introduction of priorities to well known scheduling algorithms from
the class of maximal schedulers, e.g., maximal scheduling with thresholds and centralized greedy maximal scheduling, enables
one to achieve improved non-uniform bounds. This suggests that it may be possible to identify certain algorithm parameters
(e.g., link priority), the careful adaptation of which can enable one to achieve desired differentiated performance guarantees
over a range of scenarios.
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1The efficiency-ratio of an imperfect scheduler is said to beγ if: given any load vector

−→
λ such that the optimal scheduler can stabilize the network with

load
−→
λ , the imperfect scheduler can stabilize it for the scaled down vectorγ

−→
λ . The corresponding reduced rate region is referred to as theγ-reduced rate

region.
2Analogous to efficiency-ratio, we can say that an algorithm achieves an efficiency-vector of−→γ = [γl ] if: given any load vector

−→
λ , such that the optimal

scheduler can stabilize the network with load
−→
λ , the imperfect scheduler can stabilize it for the scaled down vector−→γ •

−→
λ ) where we define−→x •−→y as the

componentwise product ofx andy, i.e.,−→x •−→y = −→z wherezl = xl yl . The corresponding reduced rate region is referred to as the−→γ -reduced rate region.
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It must be noted that maximal schedulers are of practical interest, since they can potentially be approximately implemented
using backoff schemes [7], [8], or probabilistic random-access schemes [9]. These approaches can also be modified to allow
for prioritization through suitable modulation of backoff intervals and/or access probabilities, and thus the results presented in
this paper can provide useful insight for practical MAC protocol design.

II. N OTATION AND TERMINOLOGY

We assume the availability of a single channel for communication. The wireless network is viewed as a directed graph,
with each directed link in the graph representing an available (directed) communication link between a node pair capable of
communication with non-zero rate. We model interference using aconflict relation between links. Two links are said to conflict
with each other if it is only feasible to schedule at most one of the links at any given time. The conflict relation is assumed to
be symmetric. The conflict-based interference model provides a tractable approximation of reality – while it does not capture
the wireless channel precisely, it is more amenable to analysis. Such conflict-based interference models have also been used
in past related work (e.g., [10], [11]), etc.

We assume a single channel of operation. Time is assumed to be slotted, with the slot duration being 1 unit time (i.e., we
use slot duration as the time unit). In each time slot, the scheduler used in the network determines which links should transmit
in that time slot. We also adopt the following convention: at the beginning of each time-slot, the scheduling decisions are
taken, and transmissions occur. Then new arrivals occur at the end of the slot.

We now introduce some notation and terminology.

• L denotes the set of directed links in the network.
• I(l) denotes the set of links that conflict with linkl . As a matter of convention we assume thatl ∈ I(l).
• Kl denotes the maximum number of links inI(l) that can be scheduled simultaneously ifl is not scheduled.
• K is the largest value ofKl over all links l , i.e., K = max

l
Kl .

• K̃l = max{1,Kl}.
• K̃ = max{1,K}.
• Imax= max

l∈L
|I(l)|

We limit our focus to single-hop flows. Thus, all traffic over linkl can be viewed as a single aggregated flow over that link.
We also use the following notational convention for convenience: given vector−→γ = [γ1,γ2, ...,γL ], −→γ −1 denotes the vector
[ 1

γ1
, 1

γ2
, ... 1

γ|L |
].

I II. RELATED WORK

The seminal work of Tassiulas and Ephremides[12] yielded athroughput-optimalscheduler (the Dynamic Backpressure
Scheduler), which can schedule all “feasible” traffic flows without resulting in unbounded queues. However, such an optimal
scheduler is difficult to implement in practice. Hence, various imperfect scheduling strategies that trade-off throughput for
simplicity have been proposed in [1], [2], [3], [4] amongst others. A queue-loading rule for maximal scheduling in multi-
channel wireless networks is presented in [11].

Related to this work, [5] presents some non-uniform scaling results for a simple maximal scheduler with threshold-rule. It
is shown that each link achieves a scaling of1

max
k∈I(l)

K̃k
. In Section IV of this paper, we show how introducing prioritization in a

maximal scheduler with threshold-rule helps improve the achievable non-uniform scaling guarantees. In [13] uniform scaling
results are presented for certain maximal schedulers with priorities. Their focus is on proving rate-stability. While this paper
also considers certain maximal schedulers with priorities, we focus onnon-uniform bounds, and provequeue-stability, which
is a stronger condition.

More recently, non-uniform scaling results for Longest Queue First scheduling have been presented in [6].

IV. L OCAL K-PRECEDENCEBASED MAXIMAL SCHEDULER

A maximal scheduler much studied in prior work such as [3], [10], [5] for its potential amenability to distributed
implementation is the following:

Maximal Scheduler with Threshold Rule: At the beginning of each slott: all those linksl with ql (t)≥ r l participate in
the scheduling process for that slot. From amongst the participating links, a maximal schedule is computed, i.e., if a participating
link l is not scheduled, then some link conflicting withl must be scheduled. The following uniform and non-uniform bounds
are known for this scheduler:

• Uniform Bound:As proved in [3], [10], this scheduler can achieve an efficiency-ratio:

γ =
1

K̃
(1)



• Non-uniform Bound:As proved in [5], this scheduler can achieve an efficiency-vector:

−→γ whereγl =
1

max
k∈I(l)

K̃k
(2)

We now describe a simple variation on the maximal scheduler with threshold rule:
Local K-precedence based Maximal Scheduler: In each time slott, only those linksl with ql (t) ≥ r l participate in

scheduling. The scheduler computes a schedule with the following property:
If link l participates in scheduling, the eitherl is scheduled, or some conflicting linkk∈ I(l) with K̃k ≥ K̃l is scheduled.
An alternative description in terms of priority-assignment is as follows:
Each link l has a priority valueφ(l) = K̃ − K̃l + 1, whereφ(l) < φ(k) implies l has higher priority thank. In each slot, a

maximal schedule is computed from amongst participating links by following the priority order. Thus, either a participating
link l is scheduled, or some linkk∈ I(l)\{l} with equal or higher priority must be scheduled.

An approximation to such a scheduler can be implemented using a backoff based procedure, where each linkl chooses a
backoff value proportional onφ(l) (e.g., a linkl could choosẽK− K̃l +1 as its backoff). SincẽK is typically a small constant
for most wireless networks, the overhead incurred by the backoff window would be small.

The following assumptions are made about the arrival and channel rate processes:
The arrival process for linkl is i.i.d. over all time-slotst, and is denoted by{λl (t)}, with E[λl (t)] = λl . We make no

assumption about independence of arrival processes for two linksl ,k. However, we consider only the class of arrival processes
for which E[λl (t)λk(t)] is bounded, i.e.,E[λl (t)λk(t)] ≤ η for all l ∈ L ,k ∈ L , whereη is a suitable constant. The rater l

achievable on a linkl is assumed to be time-invariant.
Theorem 1:The localK-precedence based scheduler can achieve an efficiency-vector−→γ = [γl1,γl2, ...,γl|L | ] where:

γl i =
1

max{1,Kl i}
=

1

K̃l i
The proof is presented in the appendix.

V. A GENERAL BOUND FORPRIORITIZED MAXIMAL SCHEDULERS WITHTHRESHOLDS

The scheduler described in Section IV involves assignment of priorities to links. In this section, we make an effort to better
understand the non-uniform scaling behavior of any generic maximal scheduler with thresholds and priorities.

We consider any arbitrary priority assignment to links. Unlike [13], we do not assume that the priorities are unique. Thus, two
links may have equal priority. Moreover, the priorities do not even have to be locally unique, i.e., a linkl and a linkk∈ I(l)\{l}
may have the same priority. Though this complicates the analysis slightly compared to the case of unique priorities, it is useful
to consider this more general case for the following reason: in practice a prioritized scheduler might be implemented using a
differentiated backoff mechanism. In such a scenario, the number of slots in the backoff window must be at least as many as
the number of locally distinct priorities. Therefore, assigning unique priorities to all links would implies that the window-size
must increase linearly in the number of network links, or at the very least linearly inImax. In a large network with variable
node density, it may be more practical to allocate priorities from a smaller set. In fact, we remark that the scheduler described
in Section IV also assigns potentially non-unique priorities, since many linksl (some of which may be mutually conflicting)
may have the same value ofKl .

As in Section IV, we denote the priority of a linkl by φ(l). φ(l) < φ(k) implies thatl hashigher priority thank.
Let H(l) = {k|k∈ I(l),φ(k) < φ(l)}. Thus,H(l) is the set of links that have a conflict withl and have strictly higher priority

than l .
Let Z(l) = {k|k∈ I(l),φ(k) = φ(l)}. Thus,Z(l) is the set of links inI(l) that have the same priority asl . Note thatl ∈ Z(l).
Let hl be the maximum number of links inH(l)∪Z(l) that can be concurrently scheduled ifl is not scheduled, and

h̃l = max{1,hl}.
Let Hl = max

k∈I(l)\H(l)
h̃k. It is not hard to see that for any linkk∈ H(l)∪Z(l), l ∈ I(k)\H(k), and therefore by definition:

∀ k∈ H(l)∪Z(l) : Hk ≥ h̃l (3)

Let −→r denote the vector of link-rates.
Consider the following scheduler:
In slot t, only links l with ql (t) ≥ r l participate, and a maximal schedule is computed from amongst participating links

following priority order (equal priority links can be handled in arbitrary mutual order). Thus, if a linkl participates and is not
scheduled in slott, this implies that somek∈ H(l)∪Z(l)\{l} must be scheduled in slott.

Note that a linkl that participates in scheduling can only be blocked by links inH(l)∪Z(l) since these have higher or
equal priority to it.



We make the same assumptions about the arrival and link rate processes as in Section IV.

Theorem 2:Any prioritized maximal scheduler with thresholds having priority-vector
−→
φ can stabilize any load-vector

−→
λ

for which
−→
λ +εo

−→r lies within the−→γ -reduced rate region, where 0< εo < 1 is a positive constant which can be chosen to be
arbitrarily small (e.g.,εo can be chosen to be 10−5), andγl = 1

Hl
.

The proof is presented in the appendix.

VI. A C ENTRALIZED GREEDY MAXIMAL SCHEDULER WITH MODIFIED WEIGHTS

For the results in this section, we consider only the class of arrival processes with bounded second moments, i.e.,E[λl (t)2]≤η
for all l ∈ L , whereη is a suitable constant. For simplicity, we retain the assumption of time-invariant link-rates, but the result
of this section can be generalized to a wider class of well-behaved rate processes. For each linkl , r l ≤ Rmax whereRmax is
some constant.

The centralized greedy maximal (CGM) scheduler is a well-studied instance of the class of maximal schedulers. It operates
in the following manner:

In each time-slott:

1) For each linkl , compute link weightwl = ql (t)r l .
2) Sort the linksl in non-increasing order ofwl .
3) Add the first link in the sorted list (i.e., the one with highest weight) to the schedule for the time-slot, and remove from

the list all links that are no longer feasible (due to conflicts).
4) Repeat step 3 until the list is exhausted (i.e., no more links can be added to the schedule).

For this scheduler, it is known that the efficiency-ratio is at least1
K̃

.
We now describe a variant of the CGM Scheduler analogous to the localK-precedence based threshold maximal scheduler

for which it is possible to prove non-uniform guarantees. This scheduler computes the weight for each link in a slightly different
manner to that used by the CGM scheduler. In time-slott:

1) For each linkl , computewl = ql (t)r l

K̃l
.

2) Sort the linksl in non-increasing order ofwl .
3) From the sorted list, select the first link, i.e., the one with maximum weight, and include it in the schedule; eliminate

all links conflicting with it
4) Repeat step 3 till no more links remain.

The rate allocated to a linkl during slott by the scheduler is denoted byxl (t). If a link is selected for scheduling in slott,
thenxl (t) = r l , elsexl (t) = 0.
R denotes the set of all feasible rate-allocations (these are rate-allocations that result from some conflict-free schedule).
Theorem 3:The centralized greedy maximal scheduler that uses link-weightswl = ql (t)r l

K̃l
= ql (t)r l

max{1,Kl }
can achieve an

efficiency-vector of−→γ , whereγl = 1
K̃l

= 1
max{1,Kl }

.

To prove this, we first state and prove the following claim:
Lemma 1: If a scheduler selects the set of links to schedule, such that, in each slot,∑

l∈L
ql (t)xl (t)≥ max

−→y ∈R
∑

l∈L
ql (t)

yl
K̃l

, then this

scheduler achieves an efficiency-vector of−→γ , whereγl = 1
K̃l

.

Proof: Let
−→
λ be a traffic vector within the reduced rate-region. Given vector−→γ , denote by−→γ −1 the vector[ 1

γ1
, 1

γ2
, ... 1

γ|L |
].

Then−→γ −1•
−→
λ lies within the convex-hull ofR (recall the definition of−→x •−→y as the componentwise product of−→x and−→y ).

Hence,
−→
λ lies within the convex hull ofR ′ = −→γ •R . Therefore:

(1+ ε)(−→q ·
−→
λ ) ≤ max

−→y ∈R ′

−→q ·−→y (4)

The dynamics of the queues in the network is as follows:

ql (t +1) = (ql (t)−xl (t))+ +λl (t) (5)

wherexl (t) is eitherr l or 0 depending on whetherl is scheduled or not.
Consider the following Lyapunov function:

Vq(t) = ∑
l∈L

(ql (t))
2 (6)

Noting that (ql (t + 1))2 = ((ql (t)− xl (t))+ + λl (t))2 ≤ max{(ql (t) + (λl (t)− xl (t)))2,(λl (t))2} ≤ (ql (t) + (λl (t)− xl (t)))2 +



(λl (t))2, we obtain the following:

E [∆(Vq(t))|
−→q (t)]

= E

[

∑
l∈L

(ql (t +1))2− ∑
l∈L

ql (t)
2
∣∣∣−→q (t)

]

≤ E

[

∑
l∈L

(
(ql (t)+(λl (t)−xl (t)))

2 +(λl (t))
2−ql (t)

2
)∣∣∣−→q (t)

]

≤ 2E

[

∑
l∈L

ql (t)(λl (t)−xl (t))
∣∣∣−→q (t)

]
+C1

whereC1 = η+R2
max

= 2

(

∑
l∈L

ql (t)λl − ∑
l∈L

ql (t)xl (t)

)
+C1

≤−ε∑
l∈L

λl ql (t)+C1

if ∑
l∈L

ql (t)xl (t) ≥ max
−→y ∈R ′

(

∑
l∈L

ql (t)yl

)
(using (4))

(7)

We remark that Lemma 1 can be viewed as the non-uniform analogue of Proposition 3 in [1].
Let Sg denote the set of links selected by the CGM scheduler with modified weights. Consider anyl ∈ Sg. Let us denote

by B(l) the maximum weight independent subset of links inI(l)\{l} that were still eligible in the step whenl was chosen.
Evidently |B(l)| ≤Kl . Furthermore, ifSopt is the set of links selected by a scheduler that maximizes∑

l∈L

ql (t)
xl (t)
K̃l

= ∑
l∈Sopt

ql (t)
r l
K̃l

,

then ∑
l∈Sopt

ql (t)r l

K̃l
≤ ∑

l∈Sg

max

{
ql (t)r l

K̃l
, ∑
k∈B(l)

qk(t)rk

K̃k

}
, since each linkl ∈ Sg either also occurs inSopt and thereby contributes its

weight to it, or is the cause of blocking inSg a set of links that occur inSopt, whose weight cannot exceed∑
k∈B(l)

qk(t)rk

K̃k
by

definition.
From the greedy nature of the scheduler, it follows that:

ql (t)r l

K̃l
≥

qk(t)rk

K̃k
for all l ∈ Sg,k∈ B(l) (8)

Therefore:

ql (t)r l ≥ K̃l

(
qk(t)rk

K̃k

)
for all l ∈ Sg,k∈ B(l)

∴ ql (t)r l ≥ K̃l

(
max

k∈B(l)

{
qk(t)rk

K̃k

})
for all l ∈ Sg

∴ ql (t)r l ≥ ∑
k∈B(l)

qk(t)rk

K̃k
(∵ |Bl | ≤ Kl )

∴ ∑
l∈Sg

ql (t)r l ≥ ∑
l∈Sopt

ql (t)

(
r l

K̃l

)

(9)

In light of Lemma 1, this proves the result.

VII. A C ANONICAL TOPOLOGY: THE STAR

In this section, we compare and discuss the implications of our results for a canonical topology—where the link-interference
graph is a star (Fig. 1) with one center link andK ≥ 1 radial links. This topology is often used as an example in work on
scheduling algorithms.

In Section IV, we proved that the localK-precedence scheduler achieves an eficiency vector of
[

1
K̃l

]
. Since the scheduler of

Section IV is also a priority based maximal scheduler, therefore Theorem 2 also applies to it. Thus, this scheduler can stabilize
any vector that lies in the

[
1
K̃l

]
reduced region, or in the reduced region specified by Theorem 2.



Fig. 1. A Star Topology

Let us consider what would happen when we use the localK-precedence scheduler in the star topology. In this case, the
link m corresponding to the center vertex has priority 1 and itsh̃m = 1, while all other linksm′ have priorityK, and their
respectivẽhm′ = 1. Therefore, for all linksl in the network, it follows thatHl = 1. Thus, the localK-precedence based maximal
scheduler is within anεo

−→r margin of the optimal for the star topology. Sinceεo can be chosen to be extremely small, this
is near-optimal. Thus, our non-uniform scaling results also yield a close-to-optimal uniform-scaling bound for this particular
topology.

Note that the vanilla maximal scheduler with thresholds, from which the above scheduler is derived, can be shown to have
an efficiency-ratio no better than1

K̃
in the case of the star topology. Thus, the use of precedence based onKl yields a very

substantial improvement in performance in this case.
It must be noted that for the special case of the star topology, other prior work has also shown performance-improvement

when priority is given to the center link. In [13], it is shown that giving higher priority to the center link when performing
prioritized maximal scheduling allows one to achieve rate-stability for all vectors within the rate-region. Note that our result
proves queue-stability, which is a much stronger result. Similarly, in [9], it is shown that when using a random access protocol,
breaking ties in favor of the center link yields substantially better performance than1

K̃
.

VIII. D ISCUSSION

The results presented in this paper are not only examples of non-uniform performance analysis, but also highlight how it
may be possible to achieve desirable non-uniform guarantees by appropriate assignment of priorities to links. For instance,
our non-uniform performance bound for the localK-precedence based scheduler of Section IV is an improvement over the
previous known uniform and non-uniform bounds for the vanilla maximal scheduler with thresholds [3], [5]. Our general result
for any prioritized scheduler (Theorem 2) can be helpful in determining suitable priority assignments for small known-topology
networks to achieve desired differentiated levels of performance.

It must also be noted that our result for the modified-weight CGM scheduler proves the same non-uniform bound as for the
local K-precedence scheduler; however, the two schedulers achieve this bound in different ways: the CGM variant effectively
gives precedence to linksl with lower K̃l by using weights inversely proportional tõKl , whereas the localK-precedence
scheduler gives precedence to links with largerK̃l . This is not surprising as the two algorithms operate quite differently. The
CGM approach gives precedence according to weight, and thus, a single higher weight link can prevent concurrent scheduling
of multiple links with only slightly lower weight. Modifying the weight formulation to privilege lowerK̃l addresses this. On the
other hand, the maximal scheduler with thresholds chooses any maximal schedule from amongst eligible links, and thus, a link
l with large K̃l may get a much lower fraction of time if links inI(l) which could potentially have been active concurrently,
become eligible at different times, and are scheduled sequentially, thereby increasing the fraction of time it is blocked by up
to a factor ofK̃l . Giving priority to links with higherK̃l addresses this.

It must also be emphasized that explicitly seeking to prove non-uniform performance bounds can also lead to a paradigm-
shift in the manner in which scheduler design is approached. For instance, the prioritized schedulers discussed in this paper
resulted from an effort to identify the circumstances in which certain links in a network could be guaranteed better scaling than
the remaining links. More specifically, these simple schedulers suggest that, given a network where we may seek to provide
different levels of service for different links, one can potentially leverage tunable parameters such as link priority to design
algorithms that provably achieve the desired non-uniform performance bounds.
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APPENDIX

Proof of Theorem 1: Let xl (t) denote the service received by linkl during slott. Thus,xl (t) = 0 if l is not scheduled
during the slot, andxl (t) = r l otherwise.

The queue dynamics are as follows:
ql (t +1) = ql (t)+λl (t)−xl (t) (10)

We use the following Lyapunov function to prove queue-stability:

Vq(
−→q (t)) = ∑

l∈L

K̃l ql (t)
r l

[

∑
k∈I(l)

K̃kqk(t)
rk

]
(11)

It can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) = ∑
l∈L

[
K̃l ql (t +1)

r l

(

∑
k∈I(l)

K̃kqk(t +1)

rk

)]
− ∑

l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

= ∑
l∈L

[
K̃l (ql (t)+ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t)+qk(t +1)−qk(t))
rk

)]
− ∑

l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

= ∑
l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)
+ ∑

l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

+ ∑
l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
− ∑

l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)

= ∑
l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃kqk(t)
rk

)]

+ ∑
l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]

= 2∑
l∈L

[
K̃l ql (t)

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]
+ ∑

l∈L

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)]

sincek∈ I(l) =⇒ l ∈ I(k) from the symmetric conflicts assumption

(12)

Denote byL ′(t) the set of linksl for which ql (t) ≥ r l . This set of links participates in the scheduling process for slott.
From the scheduler definition, it follows that, for alll ∈ L ′(t):

∑
k∈I(l)

K̃kxk(t)
rk

≥ K̃l (13)



If
−→
λ lies within theγl -reduced rate region, then, by assumption, there exists some scheduling algorithm that achieves stability

with load vector
−→
λ′ = −→γ −1•

−→
λ .

Noting that in the current caseγl = 1
K̃l

, this implies existence of an average service-rate vectorxl for all links l satisfying
the following for someε > 0:

(1+ ε)K̃l λl ≤ xl for all links l (14)

∑
k∈I(l)

xk

rk
≤ max{1,Kl} = K̃l for all links l (15)

Le Qinit = max
l∈L

K̃l ql (0)
r l

. Let ymin = min
l∈L , λl >0

K̃l λl
r l

. Using (12):

E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

= 2∑
l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

E
[ K̃k(qk(t +1)−qk(t))

rk

∣∣∣−→q (t)
])

+ ∑
l∈L

E

[
K̃l (ql (t +1)−ql (t))

r l

(

∑
k∈I(l)

K̃k(qk(t +1)−qk(t))
rk

)∣∣∣−→q (t)

]

≤ 2∑
l∈L

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃k

rk
E
[
λk(t)−xk(t)

∣∣∣−→q (t)
])

+ ∑
l∈L

E

[
K̃l λl (t)

r l
∑

k∈I(l)

K̃kλk(t)
rk

]

= 2∑
l∈L

K̃l ql (t)
r l

(
E

[

∑
k∈I(l)

K̃kλk(t)
rk

]
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

∣∣∣−→q (t)

])
+ ∑

l∈L

E

[
K̃l λl (t)

r l

(

∑
k∈I(l)

K̃kλk(t)
rk

)]

≤ 2∑
l∈L

K̃l ql (t)
r l

(
E

[

∑
k∈I(l)

K̃kλk(t)
rk

]
−E

[

∑
k∈I(l)

K̃kxk(t)
xk

∣∣∣−→q (t)

])
+C1

= 2∑
l∈L

K̃l ql(t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

])
+C1

= 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[(

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

)])

+2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk
−E

[

∑
k∈I(l)

K̃kxk(t)
rk

|−→q (t)

])
+C1

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[(

∑
k∈I(l)

K̃kλk

rk
− ∑

k∈I(l)

xk

rk

)
+

(

∑
k∈I(l)

xk

rk

)
−E

[

∑
k∈I′(l)

K̃kxk(t)
rk

|−→q (t)

]]

+2E

[

∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)]
+C1

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[
−ε

(

∑
k∈I(l)

K̃kλk

rk

)]
+2 ∑

l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)
+C1

using (13), (14), (15)

≤ 2 ∑
l∈L ′(t)

K̃l ql (t)
r l

[−εymin]+2 ∑
l∈L ′(t)

εyminQinit −2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin

+2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin +2 ∑
l∈L\L ′(t)

K̃l ql (t)
r l

(

∑
k∈I(l)

K̃kλk

rk

)
+C1

(compensating for links withλl = 0 by adding the 2∑
l∈L ′(t)

εyminQinit term, and also

subtracting and adding back 2∑
l∈L\L ′(t)

K̃l ql (t)
r l

εymin to handle links inL \L ′(t))



≤ 2∑
l∈L

K̃l ql (t)
r l

(−εymin)+C2

wherermax= max
l∈L

r l , C1 = |L |K̃2ηImax
(min

l∈L
r l )2 , andC2 = C1+2εymin|L |Qinit +2εyminK̃|L |+2|L |K̃2Imax. Using the above in conjunction

with Lemma 2 from [14] suffices to prove stability.

Proof of Theorem 2: Suppose the set of valid priority values that can be assigned to links isM where|M| = m. Thus,
for all l : 1≤ φ(l) ≤ m.

Let Si = {l |l ∈ L ,φ(l) = i}. Evidently for a link l ∈ Si , H(l) ⊆
i−1
S

j=1
S j , and Z(l) ⊆ Si . Conversely, for a linkl ∈ S j , I(l) \

(H(l)∪Z(l)) ⊆
m
S

i= j+1
Si .

The queue dynamics are as follows:
ql (t +1) = ql (t)+λl (t)−xl (t) (16)

wherexl (t) can be either 0 orr l depending on whetherl was scheduled during slott or not.
We use the following Lyapunov function:

Vq(
−→q (t)) =

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]
(17)

It can be seen that:

Vq(
−→q (t +1))−Vq(

−→q (t)) =

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t +1)

r l

[

∑
k∈H(l)

qk(t +1)

rk
+

1
2 ∑

k∈Z(l)

qk(t +1)

rk

]

−
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)+(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)+(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

qk(t)+(qk(t +1)−qk(t))
rk

]
−

m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

−
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]



+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

(ql (t +1)−ql (t))
r l

[

∑
k∈H(l)

qk(t)
rk

+
1
2 ∑

k∈Z(l)

qk(t)
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

+
1
2 ∑

k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+ ∑
k∈Z(l)

(qk(t +1)−qk(t))
rk

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]
(18)

sincek∈ H(l) =⇒ l ∈ I(k)\ (H(k)∪Z(k)) andk∈ Z(l) =⇒ l ∈ Z(k) and l ∈ Sm =⇒ I(l)\ (H(l)∪Z(l)) = φ

Since we have a prioritized maximal scheduler with thresholds, it follows that ifql (t) ≥ r l then eitherl is scheduled in slot
t or else somek∈ (H(l)∪Z(l))\{l} must be scheduled in slott. Therefore for all participating linksl :

∑
k∈H(l)

xk(t)
rk

+ ∑
k∈Z(l)

xk(t)
rk

≥ 1 (19)

Since the vector
−→
λ +εo

−→r lies within the[−→γ ] reduced rate region, there is some positiveε such that(1+ε)−→γ −1•(
−→
λ +εo

−→r )
is stabilizable by some scheduling algorithm. Noting thatγl = 1

Hl
in the current case, it follows that:

∑
k∈H(l)

(
(1+ ε)

Hk(λk + εork)

rk

)
+ ∑

k∈Z(l)

(
(1+ ε)

Hk(λk + εork)

rk

)
≤ h̃l (20)

Hence: [

∑
k∈H(l)

λk + εork

rk
+ ∑

k∈Z(l)

λk + εork

rk

]

=

(

∑
k∈H(l)

1
Hk(1+ ε)

Hk(1+ ε)(λk + εork)

rk
+ ∑

k∈Z(l)

1
Hk(1+ ε)

Hk(1+ ε)(λk + εork)

rk

)

≤
1

h̃l (1+ ε)

(

∑
k∈H(l)

Hk(1+ ε)(λk + εork)

rk
+ ∑

k∈Z(l)

Hk(1+ ε)(λk + εork)

rk

)
(using (3))

<

(
1

h̃l

)
h̃l = 1 (using (20))

∴ ∑
k∈H(l)

λk

rk
+ ∑

k∈Z(l)

λk

rk
< 1− εo(min

l∈L
|H(l)∪Z(l)|) ≤ 1− εo

(∀l ∈ L , l ∈ Z(l) and hence|Z(l)| ≥ 1)

(21)



Therefore:

E[Vq(
−→q (t +1))−Vq(

−→q (t))|−→q (t)]

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

E

[

∑
k∈H(l)

(qk(t +1)−qk(t))
rk

+ ∑
k∈Z(l)

(qk(t +1)−qk(t))
rk

∣∣∣−→q (t)

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

E

[

∑
k∈I(l)\(H(l)∪Z(l))

(qk(t +1)−qk(t))
rk

∣∣∣−→q (t)

]

+
m

∑
i=1

(
Imax

εo

)m−i+1

E

[

∑
l∈Si

λl (t)
r l

[

∑
k∈H(l)

λk(t)
rk

+
1
2 ∑

k∈Z(l)

λk(t)
rk

]]
using (18))

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

E

[

∑
k∈H(l)

λk(t)−xk(t)
rk

+ ∑
k∈Z(l)

λk(t)−xk(t)
rk

∣∣∣−→q (t)

]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

E

[

∑
k∈I(l)\(H(l)∪Z(l))

λk(t)−xk(t)
rk

|−→q (t)

]
+C1 whereC1 =

m

∑
i=1

(
Imax

εo

)m−i+1 ηImax|L |

(min
l∈L

r l )2

=
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

[(

∑
k∈H(l)

λk

rk
+ ∑

k∈Z(l)

λk

rk

)
−E

[(

∑
k∈H(l)

xk(t)
rk

+ ∑
k∈Z(l)

xk(t)
rk

)∣∣∣−→q (t)

]]

+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

[(

∑
k∈I(l)\(H(l)∪Z(l))

λk

rk

)
−E

[(

∑
k∈I(l)\(H(l)∪Z(l))

xk(t)
rk

)∣∣∣−→q (t)

]]
+C1

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

(−εo)+
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

εo +
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

|I(l)\ (H(l)∪Z(l))|+C1

using (19) and (21), and compensating for linksl /∈ L ′(t) by adding
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

εo

≤
m

∑
i=1

(
Imax

εo

)m−i+1

∑
l∈Si

ql (t)
r l

(−εo)+
m−1

∑
i=1

(
Imax

εo

)m−i

∑
l∈Si

ql (t)
r l

(Imax−1)+C2

≤ ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[(
Imax

εo

)m−i+1

(−εo)+

(
Imax

εo

)m−i

(Imax−1)

]
+C2

= ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[
−

(
Imax

εo

)m−i
]

+C2

≤ ∑
l∈Sm

ql (t)
r l

(−Imax)+
m−1

∑
i=1

∑
l∈Si

ql (t)
r l

[
−

(
Imax

εo

)]
+C2 (∵ Imax≥ 1,εo < 1)

whereC2 = C1 +∑m
i=1

(
Imax
εo

)m−i+1
εo|Si |.

Using the above in conjunction with Lemma 2 from [14] suffices to prove stability.


